Den här handledningen visar hur du implementerar bäst-först-sökning i Python, för ett rutnät och en graf. Bäst-först-sökning är en informerad sökalgoritm eftersom den använder en heuristik för att vägleda sökningen, den använder en uppskattning av kostnaden till målet som heuristik.
En bäst-först-sökning startar i en initial startnod och uppdaterar grannnoder med en uppskattning av kostnaden till målnoden, den väljer den granne som har den lägsta kostnaden och fortsätter att expandera noder tills den når målnoden. Bäst-först-sökning gynnar noder som ligger nära målnoden, detta kan implementeras genom att använda en prioriteringskö eller genom att sortera listan med öppna noder i stigande ordning. Heuristiken ska inte överskatta kostnaden för att nå målet, en heuristik som är närmare den faktiska kostnaden är bättre så länge den inte överskattar kostnaden för att nå målet.
En bäst-först-sökning är fullständig och hittar den kortaste vägen till målet. En bra heuristik kan göra sökningen snabb, men det kan ta lång tid och konsumera mycket minne i ett stort sökutrymme. Tidskomplexiteten är O(n) i ett rutnät och O(b^d) i en graf/träd med en förgreningsfaktor (b) och ett djup (d). Förgreningsfaktorn är det genomsnittliga antalet grannnoder som kan utökas från varje nod och djupet är det genomsnittliga antalet nivåer i en graf/träd.
Rutnätsproblem (labyrint)
Jag har skapat en enkel labyrint (ladda ner) med väggar, en startpunkt (@) och en målpunkt ($). Bäst-först-sökningen används för att hitta den kortaste vägen från startnoden till målnoden genom att använda avståndet till målnoden som heuristik. Avståndet till målnoden beräknas som manhattanavståndet från en nod till målnoden.
# This class represents a node
class Node:
# Initialize the class
def __init__(self, position:(), parent:()):
self.position = position
self.parent = parent
self.g = 0 # Distance to start node
self.h = 0 # Distance to goal node
self.f = 0 # Total cost
# Compare nodes
def __eq__(self, other):
return self.position == other.position
# Sort nodes
def __lt__(self, other):
return self.f < other.f
# Print node
def __repr__(self):
return ('({0},{1})'.format(self.position, self.f))
# Draw a grid
def draw_grid(map, width, height, spacing=2, **kwargs):
for y in range(height):
for x in range(width):
print('%%-%ds' % spacing % draw_tile(map, (x, y), kwargs), end='')
print()
# Draw a tile
def draw_tile(map, position, kwargs):
# Get the map value
value = map.get(position)
# Check if we should print the path
if 'path' in kwargs and position in kwargs['path']: value = '+'
# Check if we should print start point
if 'start' in kwargs and position == kwargs['start']: value = '@'
# Check if we should print the goal point
if 'goal' in kwargs and position == kwargs['goal']: value = '$'
# Return a tile value
return value
# Best-first search
def best_first_search(map, start, end):
# Create lists for open nodes and closed nodes
open = []
closed = []
# Create a start node and an goal node
start_node = Node(start, None)
goal_node = Node(end, None)
# Add the start node
open.append(start_node)
# Loop until the open list is empty
while len(open) > 0:
# Sort the open list to get the node with the lowest cost first
open.sort()
# Get the node with the lowest cost
current_node = open.pop(0)
# Add the current node to the closed list
closed.append(current_node)
# Check if we have reached the goal, return the path
if current_node == goal_node:
path = []
while current_node != start_node:
path.append(current_node.position)
current_node = current_node.parent
#path.append(start)
# Return reversed path
return path[::-1]
# Unzip the current node position
(x, y) = current_node.position
# Get neighbors
neighbors = [(x-1, y), (x+1, y), (x, y-1), (x, y+1)]
# Loop neighbors
for next in neighbors:
# Get value from map
map_value = map.get(next)
# Check if the node is a wall
if(map_value == '#'):
continue
# Create a neighbor node
neighbor = Node(next, current_node)
# Check if the neighbor is in the closed list
if(neighbor in closed):
continue
# Generate heuristics (Manhattan distance)
neighbor.g = abs(neighbor.position[0] - start_node.position[0]) + abs(neighbor.position[1] - start_node.position[1])
neighbor.h = abs(neighbor.position[0] - goal_node.position[0]) + abs(neighbor.position[1] - goal_node.position[1])
neighbor.f = neighbor.h
# Check if neighbor is in open list and if it has a lower f value
if(add_to_open(open, neighbor) == True):
# Everything is green, add neighbor to open list
open.append(neighbor)
# Return None, no path is found
return None
# Check if a neighbor should be added to open list
def add_to_open(open, neighbor):
for node in open:
if (neighbor == node and neighbor.f >= node.f):
return False
return True
# The main entry point for this module
def main():
# Get a map (grid)
map = {}
chars = ['c']
start = None
end = None
width = 0
height = 0
# Open a file
fp = open('data\\maze.in', 'r')
# Loop until there is no more lines
while len(chars) > 0:
# Get chars in a line
chars = [str(i) for i in fp.readline().strip()]
# Calculate the width
width = len(chars) if width == 0 else width
# Add chars to map
for x in range(len(chars)):
map[(x, height)] = chars[x]
if(chars[x] == '@'):
start = (x, height)
elif(chars[x] == '$'):
end = (x, height)
# Increase the height of the map
if(len(chars) > 0):
height += 1
# Close the file pointer
fp.close()
# Find the closest path from start(@) to end($)
path = best_first_search(map, start, end)
print()
print(path)
print()
draw_grid(map, width, height, spacing=1, path=path, start=start, goal=end)
print()
print('Steps to goal: {0}'.format(len(path)))
print()
# Tell python to run main method
if __name__ == "__main__": main()
#################################################################################
#.#...#....$....#...................#...#.........#.......#.............#.......#
#.#.#.#.###+###.#########.#########.#.#####.#####.#####.#.#.#######.###.#.#####.#
#...#.....#+++#.#.........#.#.....#.#...#...#...#.......#.#.#.......#.#.#.#...#.#
#############+#.#.#########.#.###.#.###.#.###.#.#.#######.###.#######.#.#.#.#.#.#
#+++++++++++#+#...#.#.....#...#...#...#.#.#.#.#...#...#.......#.......#.#.#.#.#.#
#+#########+#+#####.#.#.#.#.###.#####.#.#.#.#.#####.#.#########.###.###.###.#.#.#
#+#........+#+++#...#.#.#.#...#.....#.#.#.#...#.#...#.......#.....#.#...#...#...#
#+#########+#.#+###.#.#.#####.###.#.#.#.#.#.###.#.#########.#####.#.#.###.#####.#
#+#+++++++#+#.#+++#...#.#.....#.#.#.#...#.#.....#.#.....#.#...#...#.......#...#.#
#+#+#####+#+#.###+#####.#.#####.#.#.###.#.#######.###.#.#.###.#.###########.#.#.#
#+++#+++#+#+#...#+++++#.#.......#.#.#...#.....#...#...#.....#.#.#...#...#...#...#
#####+#+#+#+#########+#.#######.#.###.#######.#.###.#########.###.#.#.#.#.#######
#+++++#+++#+#+++++++++#.......#.#...#.#.#.....#.#.....#.......#...#.#.#.#.#.....#
#+#########+#+#########.###.###.###.#.#.#.###.#.#.###.#.#######.###.#.###.#.###.#
#+++#.#+++++#+++#.....#.#.#...#.#.#.....#...#.#.#...#.#...#...#...#.#.#...#...#.#
###+#.#+#####.#+#.#.###.#.###.#.#.#####.###.###.#####.###.#.#.#.###.#.#.#####.#.#
#+++#+++#.....#+#.#.#...#...#.....#...#.#...#...........#.#.#...#...#.......#.#.#
#+###+#########+#.#.#.###.#.#####.#.#.###.###.###########.#.#####.#########.###.#
#+#..+++++++++++#.#.......#.#...#.#.#...#.#...#.#.......#.......#.#...#.....#...#
#+#.#############.#########.#.#.###.###.#.#.###.#.#####.#.#######.#.#.#.#####.#.#
#+#.#+++++++++++#.#.#.#.....#.#.....#...#.#.....#...#.#.#.#.#...#.#.#.#.#.....#.#
#+###+#########+#.#.#.#######.#######.###.#####.###.#.#.#.#.###.#.#.#.#.#####.#.#
#+++++#+++#+++++#...#.........#.....#...#.....#...#...#.#.....#.#...#.#.#.....#.#
#.#####+#+#+#######.###########.#######.#.#######.###.#.###.###.#####.#.#.#####.#
#.....#+#+#+++#...#.#+++++++#.........#.#...#.......#.#.#...#...#.....#.#.#...#.#
#######+#+###+#.###.#+#####+#.#####.###.#.#.#.#######.#.#####.###.#####.#.###.#.#
#+++++++#+#+++#.....#+#...#+#...#.#.....#.#.#.#.#.....#...#...#...#.....#...#.#.#
#+#######+#+#.#####.#+###.#+###.#.#######.#.#.#.#.#######.#.###.#.###.#####.#.#.#
#+#.#+++++#+#.#+++#.#+++#.#+++#...#.#...#.#...#.#.....#.#...#...#...#.......#...#
#+#.#+#####+#.#+#+#####+#.###+###.#.#.#.#.#####.#####.#.#####.#####.#########.###
#+#..+#..+++#.#+#+#+++#+++#.#+#...#...#.#.#...#.....#...#.#...#...#.....#...#.#.#
#+###+###+#.###+#+#+#+###+#.#+#.#######.#.#.#.#####.###.#.#.###.#.#####.###.#.#.#
#+++#+++#+#.#+++#+#+#+++#+#.#+#.#.......#...#.........#.#...#...#.#...#...#.#...#
#.#+###+#+#.#+###+#+###+#+#.#+#.###.###.###########.###.#.###.###.###.###.#.###.#
#.#+++#+#+#.#+++#+++#+++#+#.#+#.....#...#...#.....#.#...#.....#.....#.#...#...#.#
#.###+#+#+#####+#####+#.#+#.#+#######.###.#.#####.#.#.#############.#.#.###.#.#.#
#...#+#+++#+++#+++++#+#.#+#.#+#+++#...#.#.#.......#.#.#...#...#...#...#.#.#.#...#
###.#+#####+#+#####+#+###+#.#+#+#+#.###.#.#########.#.#.#.#.#.#.#.#####.#.#.#####
#...#+++++++#+++++++#+++++..#+++#+++++++@...........#...#...#...#.......#.......#
#################################################################################
Steps to goal: 339
Grafproblem
Jag har för detta problem skapat en graf utifrån en karta, faktiska avstånd används i grafen. Målet är att hitta den kortaste vägen från en stad till en annan stad. Vi använder en Graph-klass och en Node-klass i algoritmen. Vi använder avstånd i raka linjer (flygavstånd) mellan städer som vår heuristik, dessa avstånd kommer aldrig att överskatta de verkliga avstånden mellan städer.
# This class represent a graph
class Graph:
# Initialize the class
def __init__(self, graph_dict=None, directed=True):
self.graph_dict = graph_dict or {}
self.directed = directed
if not directed:
self.make_undirected()
# Create an undirected graph by adding symmetric edges
def make_undirected(self):
for a in list(self.graph_dict.keys()):
for (b, dist) in self.graph_dict[a].items():
self.graph_dict.setdefault(b, {})[a] = dist
# Add a link from A and B of given distance, and also add the inverse link if the graph is undirected
def connect(self, A, B, distance=1):
self.graph_dict.setdefault(A, {})[B] = distance
if not self.directed:
self.graph_dict.setdefault(B, {})[A] = distance
# Get neighbors or a neighbor
def get(self, a, b=None):
links = self.graph_dict.setdefault(a, {})
if b is None:
return links
else:
return links.get(b)
# Return a list of nodes in the graph
def nodes(self):
s1 = set([k for k in self.graph_dict.keys()])
s2 = set([k2 for v in self.graph_dict.values() for k2, v2 in v.items()])
nodes = s1.union(s2)
return list(nodes)
# This class represent a node
class Node:
# Initialize the class
def __init__(self, name:str, parent:str):
self.name = name
self.parent = parent
self.g = 0 # Distance to start node
self.h = 0 # Distance to goal node
self.f = 0 # Total cost
# Compare nodes
def __eq__(self, other):
return self.name == other.name
# Sort nodes
def __lt__(self, other):
return self.f < other.f
# Print node
def __repr__(self):
return ('({0},{1})'.format(self.position, self.f))
# Best-first search
def best_first_search(graph, heuristics, start, end):
# Create lists for open nodes and closed nodes
open = []
closed = []
# Create a start node and an goal node
start_node = Node(start, None)
goal_node = Node(end, None)
# Add the start node
open.append(start_node)
# Loop until the open list is empty
while len(open) > 0:
# Sort the open list to get the node with the lowest cost first
open.sort()
# Get the node with the lowest cost
current_node = open.pop(0)
# Add the current node to the closed list
closed.append(current_node)
# Check if we have reached the goal, return the path
if current_node == goal_node:
path = []
while current_node != start_node:
path.append(current_node.name + ': ' + str(current_node.g))
current_node = current_node.parent
path.append(start_node.name + ': ' + str(start_node.g))
# Return reversed path
return path[::-1]
# Get neighbours
neighbors = graph.get(current_node.name)
# Loop neighbors
for key, value in neighbors.items():
# Create a neighbor node
neighbor = Node(key, current_node)
# Check if the neighbor is in the closed list
if(neighbor in closed):
continue
# Calculate cost to goal
neighbor.g = current_node.g + graph.get(current_node.name, neighbor.name)
neighbor.h = heuristics.get(neighbor.name)
neighbor.f = neighbor.h
# Check if neighbor is in open list and if it has a lower f value
if(add_to_open(open, neighbor) == True):
# Everything is green, add neighbor to open list
open.append(neighbor)
# Return None, no path is found
return None
# Check if a neighbor should be added to open list
def add_to_open(open, neighbor):
for node in open:
if (neighbor == node and neighbor.f >= node.f):
return False
return True
# The main entry point for this module
def main():
# Create a graph
graph = Graph()
# Create graph connections (Actual distance)
graph.connect('Frankfurt', 'Wurzburg', 111)
graph.connect('Frankfurt', 'Mannheim', 85)
graph.connect('Wurzburg', 'Nurnberg', 104)
graph.connect('Wurzburg', 'Stuttgart', 140)
graph.connect('Wurzburg', 'Ulm', 183)
graph.connect('Mannheim', 'Nurnberg', 230)
graph.connect('Mannheim', 'Karlsruhe', 67)
graph.connect('Karlsruhe', 'Basel', 191)
graph.connect('Karlsruhe', 'Stuttgart', 64)
graph.connect('Nurnberg', 'Ulm', 171)
graph.connect('Nurnberg', 'Munchen', 170)
graph.connect('Nurnberg', 'Passau', 220)
graph.connect('Stuttgart', 'Ulm', 107)
graph.connect('Basel', 'Bern', 91)
graph.connect('Basel', 'Zurich', 85)
graph.connect('Bern', 'Zurich', 120)
graph.connect('Zurich', 'Memmingen', 184)
graph.connect('Memmingen', 'Ulm', 55)
graph.connect('Memmingen', 'Munchen', 115)
graph.connect('Munchen', 'Ulm', 123)
graph.connect('Munchen', 'Passau', 189)
graph.connect('Munchen', 'Rosenheim', 59)
graph.connect('Rosenheim', 'Salzburg', 81)
graph.connect('Passau', 'Linz', 102)
graph.connect('Salzburg', 'Linz', 126)
# Make graph undirected, create symmetric connections
graph.make_undirected()
# Create heuristics (straight-line distance, air-travel distance)
heuristics = {}
heuristics['Basel'] = 204
heuristics['Bern'] = 247
heuristics['Frankfurt'] = 215
heuristics['Karlsruhe'] = 137
heuristics['Linz'] = 318
heuristics['Mannheim'] = 164
heuristics['Munchen'] = 120
heuristics['Memmingen'] = 47
heuristics['Nurnberg'] = 132
heuristics['Passau'] = 257
heuristics['Rosenheim'] = 168
heuristics['Stuttgart'] = 75
heuristics['Salzburg'] = 236
heuristics['Wurzburg'] = 153
heuristics['Zurich'] = 157
heuristics['Ulm'] = 0
# Run search algorithm
path = best_first_search(graph, heuristics, 'Frankfurt', 'Ulm')
print(path)
print()
# Tell python to run main method
if __name__ == "__main__": main()
['Frankfurt: 0', 'Wurzburg: 111', 'Ulm: 294']