Jag kommer att implementera SARSA (State-Action-Reward-State-Action) i denna handledning, detta är en algoritm för förstärkningslärande (RL). Algoritmen kommer att tillämpas på problemet FrozenLake från OpenAI Gym. SARSA är en algoritm som används för att lära ut en MDP-policy (Markov Decision Process) till en agent.
SARSA är en passiv algoritm för förstärkningsinlärning som kan tillämpas i miljöer som är fullt observerbara. SARSA använder temporära skillnader (TD-inlärning) för att lära sig nyttouppskattningar när en övergång sker från ett tillstånd till ett annat. SARSA behöver en policy/modell som styr dess handlingar, denna policy/modell uppdateras när en agent rör sig mellan tillstånd.
En SARSA-agent använder en policy (on-policy-algoritm) för att interagera med sin miljö, en minskande prospekteringsgrad (epsilon) gör agenten mer benägen att utforska i början och mer benägen att följa policyn mot slutet. Agenten uppdaterar sin policy/modell genom att tillämpa en inlärningstakt (alfa) och en diskonteringsfaktor (gamma). Inlärningstakten avgör hur troligt det är att ny kunskap ersätter gammal kunskap, en inlärningstakt på 0 betyder inget lärande och en inlärningstakt på 1 indikerar att ny kunskap är viktigast. Diskonteringsfaktorn avgör hur viktiga framtida belöningar är, en diskonteringsfaktor på 0 innebär att nya belöningar är viktigast medan en diskonteringsfaktor på 1 innebär att långsiktiga belöningar är viktigast.
Problem och bibliotek
En agent skall lära sig att gå från en initial position till en målposition över en frusen sjö, den frusna sjön har hål och är hal. Agenten belönas med 1 poäng om han når målet och 0 poäng annars, spelet är slut om agenten når målet eller om han hamnar i ett hål. Agenten kan röra sig åt vänster, neråt, åt höger eller uppåt. Rörelseriktningen är osäker på grund av det hala underlaget. FrozenLake-problemet är en del av gym
-biblioteket, jag använder också följande bibliotek: os, math, random, pickle and numpy
.
Röd markör i kommandotolken
Agenten har en röd bakgrund i problemet med den frusna sjön. Du måste lägga till VirtualTerminalLevel
och ett värde om 1 i registereditorn under HKEY_CURRENT_USER\Console
om du vill att den röda markören skall visas i kommandotolken i Windows 10.
Kod
Koden för SARSA-algoritmen som tillämpas på problemet med den frusna sjön visas nedan. Du kan justera parametervärden för att förbättra agentens prestanda. Policyn/modellen sparas till hårddisken efter träning och läses in från hårddisken före träning och utvärdering.
# Import libraries
import os
import math
import random
import gym
import pickle
import numpy as np
# Get an action
def get_action(q_table, state, epsilon=1.0):
values = q_table[state, :]
max_value = max(values)
actions = [a for a in range(len(values))]
greedy_actions = [a for a in range(len(values)) if values[a] == max_value]
# Explore or get greedy
if (random.random() < epsilon):
return random.choice(actions)
else:
return random.choice(greedy_actions)
# Get a model
def get_model(env):
# Load a model if we have saved one
if(os.path.isfile('models\\frozen_lake.sarsa') == True):
with open ('models\\frozen_lake.sarsa', 'rb') as fp:
return pickle.load(fp)
# Create an empty model (Q-table)
return np.zeros((env.observation_space.n, env.action_space.n))
# Update the model (Q-table)
def update(model, current_state, next_state, reward, current_action, next_action, alpha=0.4, gamma=0.95):
model[current_state, current_action] = model[current_state, current_action] + alpha * ((reward + gamma * model[next_state, next_action]) - model[current_state, current_action])
# Exploration rate
def get_epsilon(t, min_epsilon, divisor=25):
return max(min_epsilon, min(1, 1.0 - math.log10((t + 1) / divisor)))
# Learning rate
def get_alpha(t, min_alpha, divisor=25):
return max(min_alpha, min(1.0, 1.0 - math.log10((t + 1) / divisor)))
# Train a model
def train():
# Variables
episodes = 1000
timesteps = 200
score = 0
total_score = 0
# Create an environment
env = gym.make('FrozenLake8x8-v0', is_slippery=True)
# Get a model (Q table)
model = get_model(env)
# Loop episodes
for episode in range(episodes):
# Start episode and get initial observation
current_state = env.reset()
# Get learning rate and exploration rate
alpha = get_alpha(episode, 0.1)
epsilon = get_epsilon(episode, 0.1)
# Get the first action (0:Left, 1:Down, 2:Right, 3:Up)
current_action = get_action(model, current_state, epsilon)
# Reset score
score = 0
# Loop timesteps
for t in range(timesteps):
# Perform a step
# Observation: position, reward: 0/1, done: True/False, info: Probability
next_state, reward, done, info = env.step(current_action)
# Get the next action
next_action = get_action(model, next_state, epsilon)
# Update the model
update(model, current_state, next_state, reward, current_action, next_action, alpha)
# Set current values as previous values
current_state, current_action = next_state, next_action
# Update score
score += reward
total_score += reward
# Check if we are done (game over)
if done:
print('Episode {0}, Score: {1}, Timesteps: {2}, Epsilon: {3}'.format(episode+1, score, t+1, epsilon))
break
# Close the environment
env.close()
# Save the model
with open('models\\frozen_lake.sarsa', 'wb') as fp:
pickle.dump(model, fp)
# Print the score
print()
print('--- Evaluation ---')
print ('Score: {0} / {1}'.format(total_score, episodes))
print()
# Print model
print('--- Model (Q-table) ---')
print(model)
print()
# Evaluate a model
def evaluate():
# Variables
episodes = 10
timesteps = 200
total_score = 0
# Create an environment
env = gym.make('FrozenLake8x8-v0', is_slippery=True)
# Get a model
model = get_model(env)
# Loop episodes
for episode in range(episodes):
# Start episode and get initial observation
state = env.reset()
# Reset score
score = 0
# Loop timesteps
for t in range(timesteps):
# Get an action (0:Left, 1:Down, 2:Right, 3:Up)
action = np.argmax(model[state])
# Perform a step
state, reward, done, info = env.step(action)
# Update score
score += reward
total_score += reward
# Check if we are done (game over)
if done:
# Render the map
print('--- Episode {0} ---'.format(episode+1))
env.render(mode='human')
print('Score: {0}, Timesteps: {1}'.format(score, t+1))
print()
break
# Close the environment
env.close()
# Print the score
print('--- Evaluation ---')
print ('Score: {0} / {1}'.format(total_score, episodes))
print()
# The main entry point for this module
def main():
# Train the model
train()
# Evaluate the model
evaluate()
# Tell python to run main method
if __name__ == "__main__": main()
Träning
Episode 895, Score: 0.0, Timesteps: 104, Epsilon: 0.1
Episode 896, Score: 1.0, Timesteps: 92, Epsilon: 0.1
Episode 897, Score: 0.0, Timesteps: 15, Epsilon: 0.1
Episode 898, Score: 1.0, Timesteps: 38, Epsilon: 0.1
Episode 899, Score: 1.0, Timesteps: 126, Epsilon: 0.1
Episode 900, Score: 0.0, Timesteps: 19, Epsilon: 0.1
Episode 901, Score: 0.0, Timesteps: 129, Epsilon: 0.1
Episode 902, Score: 0.0, Timesteps: 125, Epsilon: 0.1
Episode 903, Score: 1.0, Timesteps: 126, Epsilon: 0.1
Episode 904, Score: 0.0, Timesteps: 107, Epsilon: 0.1
Episode 905, Score: 0.0, Timesteps: 59, Epsilon: 0.1
Episode 906, Score: 0.0, Timesteps: 11, Epsilon: 0.1
Episode 907, Score: 1.0, Timesteps: 28, Epsilon: 0.1
Episode 908, Score: 0.0, Timesteps: 40, Epsilon: 0.1
Episode 909, Score: 0.0, Timesteps: 103, Epsilon: 0.1
Episode 910, Score: 1.0, Timesteps: 144, Epsilon: 0.1
Episode 911, Score: 1.0, Timesteps: 82, Epsilon: 0.1
Episode 912, Score: 1.0, Timesteps: 132, Epsilon: 0.1
Episode 913, Score: 1.0, Timesteps: 68, Epsilon: 0.1
Episode 914, Score: 0.0, Timesteps: 147, Epsilon: 0.1
Episode 915, Score: 1.0, Timesteps: 61, Epsilon: 0.1
Episode 916, Score: 1.0, Timesteps: 130, Epsilon: 0.1
Episode 917, Score: 1.0, Timesteps: 48, Epsilon: 0.1
Episode 918, Score: 0.0, Timesteps: 159, Epsilon: 0.1
Episode 919, Score: 1.0, Timesteps: 83, Epsilon: 0.1
Episode 920, Score: 0.0, Timesteps: 62, Epsilon: 0.1
Episode 921, Score: 0.0, Timesteps: 100, Epsilon: 0.1
Episode 922, Score: 1.0, Timesteps: 188, Epsilon: 0.1
Episode 923, Score: 0.0, Timesteps: 20, Epsilon: 0.1
Episode 924, Score: 1.0, Timesteps: 106, Epsilon: 0.1
Episode 925, Score: 0.0, Timesteps: 82, Epsilon: 0.1
Episode 926, Score: 0.0, Timesteps: 200, Epsilon: 0.1
Episode 927, Score: 0.0, Timesteps: 58, Epsilon: 0.1
Episode 928, Score: 1.0, Timesteps: 192, Epsilon: 0.1
Episode 929, Score: 1.0, Timesteps: 53, Epsilon: 0.1
Episode 930, Score: 0.0, Timesteps: 136, Epsilon: 0.1
Episode 931, Score: 0.0, Timesteps: 128, Epsilon: 0.1
Episode 932, Score: 1.0, Timesteps: 61, Epsilon: 0.1
Episode 933, Score: 0.0, Timesteps: 40, Epsilon: 0.1
Episode 934, Score: 1.0, Timesteps: 81, Epsilon: 0.1
Episode 935, Score: 0.0, Timesteps: 50, Epsilon: 0.1
Episode 936, Score: 1.0, Timesteps: 33, Epsilon: 0.1
Episode 937, Score: 0.0, Timesteps: 30, Epsilon: 0.1
Episode 938, Score: 0.0, Timesteps: 72, Epsilon: 0.1
Episode 939, Score: 1.0, Timesteps: 65, Epsilon: 0.1
Episode 940, Score: 0.0, Timesteps: 48, Epsilon: 0.1
Episode 941, Score: 1.0, Timesteps: 101, Epsilon: 0.1
Episode 942, Score: 0.0, Timesteps: 145, Epsilon: 0.1
Episode 943, Score: 0.0, Timesteps: 74, Epsilon: 0.1
Episode 944, Score: 1.0, Timesteps: 91, Epsilon: 0.1
Episode 945, Score: 1.0, Timesteps: 117, Epsilon: 0.1
Episode 946, Score: 0.0, Timesteps: 80, Epsilon: 0.1
Episode 947, Score: 0.0, Timesteps: 71, Epsilon: 0.1
Episode 948, Score: 0.0, Timesteps: 68, Epsilon: 0.1
Episode 949, Score: 1.0, Timesteps: 40, Epsilon: 0.1
Episode 950, Score: 1.0, Timesteps: 138, Epsilon: 0.1
Episode 951, Score: 1.0, Timesteps: 52, Epsilon: 0.1
Episode 952, Score: 0.0, Timesteps: 71, Epsilon: 0.1
Episode 953, Score: 0.0, Timesteps: 75, Epsilon: 0.1
Episode 954, Score: 0.0, Timesteps: 20, Epsilon: 0.1
Episode 955, Score: 0.0, Timesteps: 74, Epsilon: 0.1
Episode 956, Score: 0.0, Timesteps: 17, Epsilon: 0.1
Episode 957, Score: 0.0, Timesteps: 42, Epsilon: 0.1
Episode 958, Score: 1.0, Timesteps: 35, Epsilon: 0.1
Episode 959, Score: 1.0, Timesteps: 71, Epsilon: 0.1
Episode 960, Score: 0.0, Timesteps: 46, Epsilon: 0.1
Episode 961, Score: 0.0, Timesteps: 15, Epsilon: 0.1
Episode 962, Score: 1.0, Timesteps: 42, Epsilon: 0.1
Episode 963, Score: 0.0, Timesteps: 87, Epsilon: 0.1
Episode 964, Score: 0.0, Timesteps: 35, Epsilon: 0.1
Episode 965, Score: 0.0, Timesteps: 89, Epsilon: 0.1
Episode 966, Score: 0.0, Timesteps: 34, Epsilon: 0.1
Episode 967, Score: 0.0, Timesteps: 71, Epsilon: 0.1
Episode 968, Score: 0.0, Timesteps: 28, Epsilon: 0.1
Episode 969, Score: 0.0, Timesteps: 45, Epsilon: 0.1
Episode 970, Score: 1.0, Timesteps: 64, Epsilon: 0.1
Episode 971, Score: 0.0, Timesteps: 200, Epsilon: 0.1
Episode 972, Score: 1.0, Timesteps: 89, Epsilon: 0.1
Episode 973, Score: 0.0, Timesteps: 36, Epsilon: 0.1
Episode 974, Score: 0.0, Timesteps: 44, Epsilon: 0.1
Episode 975, Score: 0.0, Timesteps: 86, Epsilon: 0.1
Episode 976, Score: 0.0, Timesteps: 25, Epsilon: 0.1
Episode 977, Score: 0.0, Timesteps: 29, Epsilon: 0.1
Episode 978, Score: 1.0, Timesteps: 51, Epsilon: 0.1
Episode 979, Score: 0.0, Timesteps: 14, Epsilon: 0.1
Episode 980, Score: 0.0, Timesteps: 67, Epsilon: 0.1
Episode 981, Score: 1.0, Timesteps: 64, Epsilon: 0.1
Episode 982, Score: 1.0, Timesteps: 42, Epsilon: 0.1
Episode 983, Score: 1.0, Timesteps: 102, Epsilon: 0.1
Episode 984, Score: 1.0, Timesteps: 45, Epsilon: 0.1
Episode 985, Score: 1.0, Timesteps: 74, Epsilon: 0.1
Episode 986, Score: 0.0, Timesteps: 158, Epsilon: 0.1
Episode 987, Score: 0.0, Timesteps: 33, Epsilon: 0.1
Episode 988, Score: 0.0, Timesteps: 200, Epsilon: 0.1
Episode 989, Score: 1.0, Timesteps: 134, Epsilon: 0.1
Episode 990, Score: 0.0, Timesteps: 60, Epsilon: 0.1
Episode 991, Score: 0.0, Timesteps: 118, Epsilon: 0.1
Episode 992, Score: 0.0, Timesteps: 75, Epsilon: 0.1
Episode 993, Score: 0.0, Timesteps: 28, Epsilon: 0.1
Episode 994, Score: 0.0, Timesteps: 36, Epsilon: 0.1
Episode 995, Score: 1.0, Timesteps: 108, Epsilon: 0.1
Episode 996, Score: 1.0, Timesteps: 167, Epsilon: 0.1
Episode 997, Score: 0.0, Timesteps: 72, Epsilon: 0.1
Episode 998, Score: 1.0, Timesteps: 161, Epsilon: 0.1
Episode 999, Score: 0.0, Timesteps: 20, Epsilon: 0.1
Episode 1000, Score: 0.0, Timesteps: 34, Epsilon: 0.1
--- Evaluation ---
Score: 330.0 / 1000
--- Model (Q-table) ---
[[1.58822434e-02 1.83542753e-02 1.66868140e-02 1.69023887e-02]
[1.79409349e-02 1.88950361e-02 2.59922456e-02 1.85847680e-02]
[2.36208134e-02 2.19922283e-02 3.14218298e-02 2.55790725e-02]
[2.98800128e-02 3.49232197e-02 4.17804445e-02 3.42961358e-02]
[3.49698968e-02 4.23105797e-02 5.52968369e-02 4.69244825e-02]
[5.60323765e-02 5.40534652e-02 6.82347220e-02 5.66681612e-02]
[6.95953605e-02 7.37920969e-02 7.97432752e-02 7.06871250e-02]
[7.78121104e-02 8.05321716e-02 7.87840901e-02 7.33820152e-02]
[1.40025943e-02 1.35864342e-02 1.54138705e-02 1.70385997e-02]
[1.49047978e-02 1.58974876e-02 1.66414128e-02 1.95952317e-02]
[2.06635637e-02 2.11896984e-02 2.14088874e-02 2.65774700e-02]
[2.12005520e-02 2.13054825e-02 1.99610922e-02 3.50770280e-02]
[3.35060911e-02 4.45102926e-02 3.49668859e-02 3.62917935e-02]
[4.45862331e-02 5.65520299e-02 7.04236101e-02 5.38877418e-02]
[7.73476289e-02 8.46758064e-02 8.88957549e-02 7.97801518e-02]
[8.81340677e-02 9.54217586e-02 8.43980436e-02 8.12543863e-02]
[3.87344841e-03 4.03381657e-03 6.19510965e-03 1.44182728e-02]
[5.30553404e-03 4.21520872e-03 7.75274786e-03 1.41337472e-02]
[1.13591113e-02 1.74026972e-03 2.22417192e-03 4.22445654e-03]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[2.27253875e-02 1.69603540e-02 3.85779399e-02 3.35287190e-02]
[2.03989065e-02 3.74362522e-02 4.88730301e-02 6.65208777e-02]
[8.61303641e-02 8.72819163e-02 1.07443446e-01 9.82719998e-02]
[1.05038640e-01 1.19186834e-01 1.22271005e-01 1.06191074e-01]
[2.23297129e-03 2.00029401e-03 2.77216991e-03 7.94955022e-03]
[8.10664415e-03 2.27907479e-03 2.64391333e-03 2.48198272e-03]
[2.94566767e-03 2.09542586e-03 2.51435984e-03 8.21980716e-03]
[1.21590709e-03 4.11632866e-03 2.32949660e-03 9.51239071e-03]
[2.19847726e-02 4.27582672e-03 1.48586603e-02 6.99846753e-03]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[9.10808317e-02 9.31422088e-02 1.30674856e-01 8.89284563e-02]
[1.40985145e-01 1.62682619e-01 1.79528807e-01 1.30110380e-01]
[1.15762684e-03 7.26653944e-04 1.35847036e-03 3.00219897e-03]
[1.15773368e-03 1.28508461e-03 5.23269995e-04 2.95228654e-03]
[2.04631738e-03 8.44853756e-04 3.15384675e-04 4.14649578e-04]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[9.61247006e-03 2.77914396e-02 2.83902401e-02 3.89492316e-02]
[1.71003877e-02 6.36640945e-02 4.07647828e-02 3.27418306e-02]
[5.70324636e-02 8.44182572e-02 1.13571809e-01 1.31175827e-01]
[2.18134284e-01 2.26573375e-01 2.31307952e-01 2.05702978e-01]
[0.00000000e+00 6.80590744e-06 4.94023446e-04 1.60096079e-03]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 8.46867682e-04 4.37405618e-03 8.19220688e-03]
[3.80198405e-03 6.78539574e-04 1.89507389e-02 2.01498635e-02]
[4.20096828e-02 9.36315281e-03 2.81296469e-02 1.04656804e-02]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[3.27129302e-01 2.51159618e-01 3.77047622e-01 2.37511788e-01]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 3.90852249e-05]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[2.35626869e-03 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[7.02096880e-04 2.52800811e-02 4.11033641e-02 5.73956495e-03]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[4.18710845e-01 4.88118847e-01 5.96790409e-01 3.63097922e-01]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]
[5.77085845e-03 2.66688416e-02 5.77854020e-02 2.73056609e-03]
[1.17919238e-02 1.72500867e-01 9.73251261e-03 6.34293721e-02]
[0.00000000e+00 1.00000000e-01 5.97844196e-01 8.26245000e-02]
[0.00000000e+00 0.00000000e+00 0.00000000e+00 0.00000000e+00]]
Utvärdering
--- Episode 1 ---
(Right)
SFFFFFFF
FFFFFFFF
FFFHFFFF
FFFFFHFF
FFFHFFFF
FHHFFFHF
FHFFHFHF
FFFHFFFG
Score: 1.0, Timesteps: 62
--- Episode 2 ---
(Right)
SFFFFFFF
FFFFFFFF
FFFHFFFF
FFFFFHFF
FFFHFFFF
FHHFFFHF
FHFFHFHF
FFFHFFFG
Score: 1.0, Timesteps: 109
--- Episode 3 ---
(Right)
SFFFFFFF
FFFFFFFF
FFFHFFFF
FFFFFHFF
FFFHFFFF
FHHFFFHF
FHFFHFHF
FFFHFFFG
Score: 1.0, Timesteps: 97
--- Episode 4 ---
(Up)
SFFFFFFF
FFFFFFFF
FFFHFFFF
FFFFFHFF
FFFHFFFF
FHHFFFHF
FHFFHFHF
FFFHFFFG
Score: 0.0, Timesteps: 55
--- Episode 5 ---
(Right)
SFFFFFFF
FFFFFFFF
FFFHFFFF
FFFFFHFF
FFFHFFFF
FHHFFFHF
FHFFHFHF
FFFHFFFG
Score: 1.0, Timesteps: 116
--- Episode 6 ---
(Right)
SFFFFFFF
FFFFFFFF
FFFHFFFF
FFFFFHFF
FFFHFFFF
FHHFFFHF
FHFFHFHF
FFFHFFFG
Score: 1.0, Timesteps: 106
--- Episode 7 ---
(Right)
SFFFFFFF
FFFFFFFF
FFFHFFFF
FFFFFHFF
FFFHFFFF
FHHFFFHF
FHFFHFHF
FFFHFFFG
Score: 1.0, Timesteps: 163
--- Episode 8 ---
(Right)
SFFFFFFF
FFFFFFFF
FFFHFFFF
FFFFFHFF
FFFHFFFF
FHHFFFHF
FHFFHFHF
FFFHFFFG
Score: 1.0, Timesteps: 73
--- Episode 9 ---
(Right)
SFFFFFFF
FFFFFFFF
FFFHFFFF
FFFFFHFF
FFFHFFFF
FHHFFFHF
FHFFHFHF
FFFHFFFG
Score: 1.0, Timesteps: 95
--- Episode 10 ---
(Right)
SFFFFFFF
FFFFFFFF
FFFHFFFF
FFFFFHFF
FFFHFFFF
FHHFFFHF
FHFFHFHF
FFFHFFFG
Score: 1.0, Timesteps: 142
--- Evaluation ---
Score: 9.0 / 10